Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2-Oxido-1-naphthaldehyde benzoylhydrazonato- $\kappa^3 N, N', O$)pyridinecopper(II)

Li-Fei Zou, Xiu-Yun Yang, Ying Gao, Hai-Bo Yao and Yun-Hui Li*

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China Correspondence e-mail: liyh@cust.edu.cn

Received 18 March 2011; accepted 25 March 2011

Key indicators: single-crystal X-ray study; T = 185 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.086; data-to-parameter ratio = 13.8.

In the mononuclear title compound, $[Cu^{II}(C_{18}H_{12}N_2O_2)]$ - (C_5H_5N)], the Cu^{II} ion is coordinated by two O atoms and one N atom from the dianionic tridentate L^{2-} ligand (H₂L is 2hydroxy-1-naphthaldehyde benzoylhydrazide) and one N atom from a pyridine molecule in a CuN2O2 distorted square-planar coordination environment.

Related literature

For the preparation of the Schiff base, see: Qiao et al. (2010). For chemically related applications arising from Schiff base compounds, see: Ando et al. (2004); Anford et al. (1998); Guo et al. (2010). For related structures, see: Ali et al. (2004); Sun et al. (2011); Xu et al. (2006); Yu et al. (2010).

Experimental

Crystal data $[Cu(C_{18}H_{12}N_2O_2)(C_5H_5N)]$ $M_r = 430.94$ Monoclinic, $P2_1/c$ a = 11.6196 (6) Å

b = 8.4254 (4) Å c = 19.6194 (10) Å $\beta = 106.247 (1)^{\circ}$ $V = 1844.03 (16) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 1.21 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area detector	8559 measured reflections
diffractometer	3619 independent reflections
Absorption correction: multi-scan	2860 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.031$
$T_{\rm min} = 0.849, T_{\rm max} = 0.889$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 262 parameters $wR(F^2) = 0.086$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^-$ S = 1.03 $\Delta \rho_{\rm min} = -0.29$ e Å⁻³ 3619 reflections

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.8853 (17)	Cu1-O2	1.9243 (17)
Cu1-N1	1.902 (2)	Cu1-N3	2.001 (2)
O1-Cu1-N1	93.17 (8)	O1-Cu1-N3	93.65 (8)
O1-Cu1-O2	172.59 (7)	N1-Cu1-N3	171.07 (8)
N1-Cu1-O2	81.30 (8)	O2-Cu1-N3	92.37 (8)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

We thank the project supported by Jilin Provincial Science & Technology Department (20090535) and Changchun University of Science and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2095).

References

Ali, H., Khamis, N. A., Basirun, W. J. & Yamin, B. M. (2004). Acta Cryst. E60, m982-m983.

Ando, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237-2244. Anford, J.-D., Vittal, J.-J. & Wang, Y.-M. (1998). Inorg. Chem. 37, 1226–1231. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538-8539.

Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, 095.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. 47, 746-748.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Xu, D.-Y., Liu, Y., Liu, M.-L., Wei, J.-F. & Dou, J.-M. (2006). Acta Cryst. E62, m671-m673.

Yu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139-144.

metal-organic compounds

 $0.14 \times 0.12 \times 0.10 \text{ mm}$

T = 185 K

Acta Cryst. (2011). E67, m511 [doi:10.1107/S1600536811011081]

(2-Oxido-1-naphthaldehyde benzoylhydrazonato- $\kappa^3 N, N', O$)pyridinecopper(II)

L.-F. Zou, X.-Y. Yang, Y. Gao, H.-B. Yao and Y.-H. Li

Comment

Interest in the chemistry of Schiff base arises from their ability to bind to metal ions (Yu *et al.*, 2010) as well as their antitumor activities and magnetochemistry (Ando *et al.*, 2004; Guo *et al.*, 2010). In fact, with some acylhydrazone ligands, their metal compounds are endowed with significantly improved industrial processes (Anford *et al.*, 1998). We selected the 2-hydroxy-1-naphthaldehyde benzoylhydrazide (H₂L) Schiff base ligand to construct coordination polymers with defined geometry, due to its combination of nitrogen and oxygen donor atoms. We report here the preparation and crystal structure of the Schiff base Cu^{II} title compound.

The present compound, $[Cu^{II}(C_{18}H_{12}N_2O_2)(C_5H_5N)]$, together with the atom-numbering scheme, is illustrated in Fig. 1. Selected bond lengths and angles are given in Table 1. The Cu^{II} ion is coordinated by two O atoms and one N atom from the dianionic tridentate ligand L^{2-} ligand (H₂L is 2-hydroxy-1-naphthaldehyde benzoylhydrazide), and one N atom from a pyridine molecule. The Cu^{II} ion adopts a CuN₂O₂ distorted square-planar coordination environment. The Cu—O and Cu—N bond distances are similar to the corresponding bond distances observed in related compounds (Ali *et al.*, 2004; Xu *et al.*, 2006; Sun *et al.*, 2011). There is no significant deviation of the metal centre from the N₂O₂ equatorial plane. The maximum displacements from the least-squares plane through N1, N3, O1, and O2 (rms deviation = 0.0895 Å) are 0.096 (1) and -0.094 (1) Å for atoms N1 and O2; Cu1 is -0.013 (1) Å below the mean plane. The coordinated pyridine molecule is almost coplanar with the previous N₂O₂ plane, the dihedral angle between the mean planes is 7.2 (1)°.

Experimental

The 2-hydroxy-1-naphthaldehyde benzoylhydrazide ligand (H_2L) was prepared in a similar manner to the reported procedures (Qiao *et al.*, 2010). The title compound was synthesized by adding pyridine (0.2 mL) to a solution of H_2L (0.1 mmol) and Cu(OAc)₂ (0.1 mmol) in methanol/dichloromethane (1:1, 20 mL), and the resulting mixture was stirred for about 6 h to afford a green solution. A week later, brown crystals of the title compound were isolated from the solution.

Refinement

All H atoms were placed in calculated positions and refined using a riding model [C–H = 0.95 Å and $U_{iso}(H) = 1.5U_{eq}(C)$].

Figures

Fig. 1. A view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

(2-Oxido-1-naphthaldehyde benzoylhydrazonato- $\kappa^3 N, N', O$)pyridinecopper(II)

$[Cu(C_{18}H_{12}N_2O_2)(C_5H_5N)]$	F(000) = 884
$M_r = 430.94$	$D_{\rm x} = 1.552 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9033 reflections
a = 11.6196 (6) Å	$\theta = 4.8 - 51.9^{\circ}$
b = 8.4254 (4) Å	$\mu = 1.21 \text{ mm}^{-1}$
c = 19.6194 (10) Å	T = 185 K
$\beta = 106.247 (1)^{\circ}$	Block, brown
$V = 1844.03 (16) \text{ Å}^3$	$0.14 \times 0.12 \times 0.10 \text{ mm}$
Z = 4	

Data collection

3619 independent reflections
2860 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\text{max}} = 26.0^\circ, \ \theta_{\text{min}} = 1.8^\circ$
$h = -14 \rightarrow 14$
$k = -6 \rightarrow 10$
$l = -18 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.086$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0353P)^2 + 1.0945P]$ where $P = (F_0^2 + 2F_0^2)/3$

3619 reflections	$(\Delta/\sigma)_{max} = 0.001$
262 parameters	$\Delta\rho_{max} = 0.46~e~\text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.86976 (3)	0.13588 (4)	0.539632 (16)	0.02191 (11)
N1	0.89789 (18)	0.1188 (2)	0.44895 (11)	0.0200 (5)
N2	0.99966 (18)	0.1976 (3)	0.44156 (11)	0.0216 (5)
N3	0.86766 (19)	0.1483 (2)	0.64115 (11)	0.0226 (5)
01	0.72604 (15)	0.0186 (2)	0.51138 (9)	0.0247 (4)
O2	1.00963 (15)	0.2688 (2)	0.55668 (9)	0.0238 (4)
C1	0.7084 (2)	-0.1291 (3)	0.26471 (14)	0.0265 (6)
H1	0.7807	-0.0755	0.2655	0.032*
C2	0.6465 (3)	-0.2069 (3)	0.20399 (14)	0.0300 (6)
H2	0.6762	-0.2046	0.1635	0.036*
C3	0.5411 (3)	-0.2891 (3)	0.20059 (15)	0.0306 (6)
H3	0.4997	-0.3440	0.1586	0.037*
C4	0.4982 (3)	-0.2894 (3)	0.25876 (15)	0.0313 (7)
H4	0.4259	-0.3444	0.2567	0.038*
C5	0.5588 (2)	-0.2100 (3)	0.32154 (14)	0.0261 (6)
C6	0.5135 (2)	-0.2110 (3)	0.38178 (15)	0.0295 (6)
H6	0.4416	-0.2672	0.3794	0.035*
C7	0.5702 (2)	-0.1339 (3)	0.44258 (14)	0.0267 (6)
H7	0.5366	-0.1366	0.4815	0.032*
C8	0.6791 (2)	-0.0489 (3)	0.44957 (13)	0.0221 (6)
C9	0.7276 (2)	-0.0447 (3)	0.39116 (13)	0.0205 (5)
C10	0.6671 (2)	-0.1266 (3)	0.32608 (13)	0.0225 (6)
C11	0.8363 (2)	0.0379 (3)	0.39455 (13)	0.0216 (6)
H11	0.8658	0.0333	0.3541	0.026*
C12	1.0481 (2)	0.2750 (3)	0.50057 (13)	0.0213 (6)
C13	1.1522 (2)	0.3790 (3)	0.50397 (14)	0.0219 (6)
C14	1.1922 (3)	0.4090 (3)	0.44463 (15)	0.0329 (7)
H14	1.1537	0.3597	0.4006	0.039*
C15	1.2877 (3)	0.5103 (4)	0.44947 (16)	0.0385 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15	1.3142	0.5301	0.4086	0.046*
C16	1.3449 (3)	0.5828 (3)	0.51292 (17)	0.0361 (7)
H16	1.4105	0.6522	0.5158	0.043*
C17	1.3063 (2)	0.5537 (3)	0.57197 (16)	0.0328 (7)
H17	1.3455	0.6032	0.6158	0.039*
C18	1.2107 (2)	0.4527 (3)	0.56769 (14)	0.0262 (6)
H18	1.1847	0.4334	0.6087	0.031*
C19	0.9510 (2)	0.2352 (3)	0.68806 (15)	0.0323 (7)
H19	1.0071	0.2946	0.6714	0.039*
C20	0.9577 (3)	0.2408 (4)	0.75936 (15)	0.0350 (7)
H20	1.0176	0.3027	0.7911	0.042*
C21	0.8762 (3)	0.1554 (3)	0.78380 (14)	0.0313 (7)
H21	0.8795	0.1564	0.8327	0.038*
C22	0.7900 (3)	0.0686 (4)	0.73614 (15)	0.0332 (7)
H22	0.7319	0.0101	0.7515	0.040*
C23	0.7889 (2)	0.0676 (3)	0.66537 (14)	0.0275 (6)
H23	0.7294	0.0067	0.6328	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02087 (18)	0.02664 (19)	0.01893 (17)	-0.00342 (14)	0.00672 (13)	-0.00051 (14)
N1	0.0180 (11)	0.0199 (11)	0.0215 (11)	-0.0023 (9)	0.0045 (9)	0.0025 (9)
N2	0.0180 (11)	0.0242 (11)	0.0227 (11)	-0.0027 (9)	0.0062 (9)	0.0032 (9)
N3	0.0222 (11)	0.0258 (12)	0.0204 (11)	-0.0017 (10)	0.0069 (9)	-0.0012 (9)
01	0.0248 (10)	0.0274 (10)	0.0233 (10)	-0.0047 (8)	0.0092 (8)	-0.0023 (8)
O2	0.0240 (10)	0.0289 (10)	0.0201 (9)	-0.0047 (8)	0.0085 (8)	-0.0025 (8)
C1	0.0250 (14)	0.0242 (14)	0.0281 (14)	0.0001 (12)	0.0037 (12)	0.0004 (12)
C2	0.0352 (16)	0.0268 (15)	0.0262 (15)	0.0026 (13)	0.0053 (13)	-0.0006 (12)
C3	0.0333 (16)	0.0248 (15)	0.0277 (15)	0.0017 (13)	-0.0016 (13)	-0.0075 (12)
C4	0.0269 (15)	0.0256 (15)	0.0353 (16)	-0.0040 (12)	-0.0011 (13)	-0.0040 (13)
C5	0.0266 (15)	0.0196 (14)	0.0296 (15)	-0.0009 (11)	0.0038 (12)	0.0018 (12)
C6	0.0249 (15)	0.0262 (15)	0.0367 (17)	-0.0071 (12)	0.0073 (13)	0.0012 (13)
C7	0.0243 (14)	0.0267 (15)	0.0298 (15)	-0.0027 (12)	0.0086 (12)	0.0036 (12)
C8	0.0223 (13)	0.0189 (13)	0.0235 (14)	0.0012 (11)	0.0039 (11)	0.0027 (11)
C9	0.0202 (13)	0.0175 (13)	0.0217 (13)	0.0002 (10)	0.0025 (11)	0.0018 (10)
C10	0.0219 (13)	0.0178 (13)	0.0249 (14)	0.0031 (11)	0.0018 (11)	0.0029 (11)
C11	0.0248 (14)	0.0208 (13)	0.0201 (13)	0.0033 (11)	0.0076 (11)	0.0037 (11)
C12	0.0221 (14)	0.0214 (14)	0.0208 (13)	0.0040 (11)	0.0067 (11)	0.0038 (11)
C13	0.0199 (13)	0.0195 (13)	0.0261 (14)	0.0014 (11)	0.0061 (11)	0.0034 (11)
C14	0.0372 (17)	0.0342 (16)	0.0293 (16)	-0.0103 (13)	0.0127 (13)	-0.0024 (13)
C15	0.0434 (19)	0.0386 (18)	0.0400 (18)	-0.0107 (15)	0.0222 (15)	0.0020 (14)
C16	0.0311 (16)	0.0264 (15)	0.054 (2)	-0.0115 (13)	0.0172 (15)	-0.0010 (14)
C17	0.0294 (16)	0.0286 (16)	0.0384 (17)	-0.0077 (13)	0.0063 (13)	-0.0087 (13)
C18	0.0271 (15)	0.0243 (14)	0.0284 (15)	-0.0013 (12)	0.0096 (12)	-0.0040 (12)
C19	0.0306 (16)	0.0393 (17)	0.0291 (15)	-0.0132 (14)	0.0119 (13)	-0.0048 (13)
C20	0.0385 (17)	0.0398 (18)	0.0264 (15)	-0.0112 (14)	0.0087 (13)	-0.0066 (13)
C21	0.0429 (17)	0.0316 (16)	0.0214 (14)	-0.0048 (13)	0.0120 (13)	-0.0026 (12)

C22 C23	0.0374 (17) 0.0268 (15)	0.0374 (17) 0.0327 (15)	0.0287 (15) 0.0235 (14)	-0.0117 (14) -0.0072 (12)	0.0156 (13) 0.0075 (12)	-0.0043 (13) -0.0031 (12)
Geometric para	meters (A, °)					
Cu1—O1		1.8853 (17)	C8—	С9	1.41	2 (3)
Cu1—N1		1.902 (2)	С9—	C11	1.42	28 (3)
Cu1—O2		1.9243 (17)	С9—	C10	1.44	9 (3)
Cu1—N3		2.001 (2)	C11–	-H11	0.95	00
N1-C11		1.300 (3)	C12-	-C13	1.48	30 (3)
N1—N2		1.398 (3)	C13-	-C18	1.39	1 (4)
N2-C12		1.311 (3)	C13-	C14	1.39	2 (4)
N3—C23		1.331 (3)	C14-	C15	1.38	1 (4)
N3—C19		1.349 (3)	C14-	-H14	0.95	00
O1—C8		1.312 (3)	C15-	-C16	1.37	'9 (4)
O2—C12		1.300 (3)	C15-	-H15	0.95	00
C1—C2		1.374 (4)	C16–	C17	1.37	6 (4)
C1—C10		1.415 (4)	C16–	-H16	0.95	00
C1—H1		0.9500	C17-	-C18	1.38	4 (4)
С2—С3		1.392 (4)	C17–	–H17	0.95	00
C2—H2		0.9500	C18–	-H18	0.95	00
C3—C4		1.367 (4)	C19–	-C20	1.38	0 (4)
С3—Н3		0.9500	C19–	-H19	0.95	00
C4—C5		1.405 (4)	C20–	-C21	1.37	'8 (4)
C4—H4		0.9500	C20–	-H20	0.95	00
С5—С6		1.422 (4)	C21-	-C22	1.37	4 (4)
C5—C10		1.423 (4)	C21–	-H21	0.95	00
C6—C7		1.356 (4)	C22–	-C23	1.38	5 (4)
С6—Н6		0.9500	C22–	-H22	0.95	00
С7—С8		1.427 (4)	C23–	-H23	0.95	00
С7—Н7		0.9500				
O1—Cu1—N1		93.17 (8)	C1—	C10—C5	116.	4 (2)
O1—Cu1—O2		172.59 (7)	C1—	С10—С9	124	.1 (2)
N1—Cu1—O2		81.30 (8)	C5—	С10—С9	119.	.6 (2)
O1—Cu1—N3		93.65 (8)	N1—	С11—С9	124	.8 (2)
N1—Cu1—N3		171.07 (8)	N1—	C11—H11	117.	.6
O2—Cu1—N3		92.37 (8)	С9—	С11—Н11	117.	.6
C11—N1—N2		116.8 (2)	O2—	C12—N2	124	.3 (2)
C11—N1—Cu1		127.48 (17)	O2—	C12—C13	117.	2 (2)
N2—N1—Cu1		115.64 (15)	N2—	C12—C13	118.	6 (2)
C12—N2—N1		108.15 (19)	C18–	-C13-C14	118.	5 (2)
C23—N3—C19		117.9 (2)	C18–	-C13-C12	119	5 (2)
C23—N3—Cu1		121.99 (18)	C14-	-C13-C12	122	.0 (2)
C19—N3—Cu1		120.08 (17)	C15-	-C14C13	120	.3 (3)
C8—O1—Cu1		127.16 (16)	C15-	-C14-H14	119.	9
C12—O2—Cu1		110.51 (16)	C13–	-C14-H14	119.	9
C2-C1-C10		121.7 (3)	C16–	-C15-C14	120	.7 (3)
C2—C1—H1		119.2	C16–	-С15—Н15	119.	.6
C10-C1-H1		119.2	C14–	-С15—Н15	119.	.6

C1—C2—C3	121.3 (3)	C17—C16—C15	119.5 (3)
C1—C2—H2	119.4	C17—C16—H16	120.2
С3—С2—Н2	119.4	C15—C16—H16	120.2
C4—C3—C2	118.8 (3)	C16—C17—C18	120.2 (3)
С4—С3—Н3	120.6	С16—С17—Н17	119.9
С2—С3—Н3	120.6	С18—С17—Н17	119.9
C3—C4—C5	121.4 (3)	C17—C18—C13	120.7 (3)
С3—С4—Н4	119.3	C17—C18—H18	119.6
C5—C4—H4	119.3	C13—C18—H18	119.6
C4—C5—C6	121.0 (3)	N3—C19—C20	122.5 (3)
C4—C5—C10	120.5 (3)	N3—C19—H19	118.8
C6—C5—C10	118.5 (2)	С20—С19—Н19	118.8
C7—C6—C5	121.8 (2)	C21—C20—C19	119.0 (3)
С7—С6—Н6	119.1	C21—C20—H20	120.5
С5—С6—Н6	119.1	С19—С20—Н20	120.5
C6—C7—C8	121.7 (2)	C22—C21—C20	118.8 (3)
С6—С7—Н7	119.2	C22—C21—H21	120.6
С8—С7—Н7	119.2	C20-C21-H21	120.6
O1—C8—C9	125.6 (2)	C21—C22—C23	119.1 (3)
O1—C8—C7	115.8 (2)	C21—C22—H22	120.4
C9—C8—C7	118.6 (2)	C23—C22—H22	120.4
C8—C9—C11	121.6 (2)	N3—C23—C22	122.7 (3)
C8—C9—C10	119.9 (2)	N3—C23—H23	118.6
C11—C9—C10	118.6 (2)	С22—С23—Н23	118.6

Fig. 1